
N90-293. 9

Recursive Multibody Dynamics

and

Discrete-Time Optimal Control

G. M. T. D'Eleuterio and C. J. Damaren

Institute for Aerospace Studies

University of Toronto

Downsview, Ontario, Canada M3H 5T6

Abstract

A recursivealgorithmisdevelopedforthesolutionofthe simulationdynamics problem fora chain

ofrigidbodies.Arbitraryjointconstraintsarepermitted,thatis,jointsmay allowtranslationaland/or
rotationaldegreesoffreedom.The recursiveprocedureisshown tobe identicalto thatencounteredina

discrete-timeoptimalcontrolproblem. For each relevantquantityinthe multibody dynamics problem,

thereexistsan analoginthecontextofoptimalcontrol.The performanceindexthatisminimizedinthe

controlproblemisidentifiedasGibbs'functionforthe chainofbodies.

1 Introduction

The need to predict the motion of robotic systems in terrestial and and space applications has focused
attention on the area of multibody dynamics. In this paper, we treat the simulation dynamics of a chain

of rigid bodies. Given the external force distribution and control influences acting on the chain, we show
how its subsequent motion, namely, the joint accelerations, can be determined using a recursive procedure.

The equations of motion and kinematical constraints constitute a two-point boundary value problem. The

key to its solution is the elimination of the constraint forces which exist at each joint. Our method in this

regard is a generalization of that used by FEATHERSTONE [1983] for single degree of freedom joints, although

FEATHERSTONE [1987] has explained how the extension to general constraints can be effected.

Recently, RODRmUEZ [1987] has pointed out the similarity between the equations describing a chain

of hinged bodies and those that arise in discrete-time optimal estimation and smoothing problems. His
approach has utilized the correspondence with optimal filtering (the Kalman filter) and smoothing (the
Bryson-Frazier smoother). Here, we show that the equations are identical in form to an optimal control

problem. In fact, there is a one-to-one correspondence between the elements of the multibody dynamics

problem and the control problem. The feedback solution for the control in terms of the state is precisely that

which yields the joint accelerations in terms of the body accelerations. The analogy is further uncovered by

identifying the performance index (written in terms of the chain dynamics) as GIBBS' [1879] function.

The major benefit of a recursive solution of the simulation problem is its computational efficiency.

One avoids dealing with the system of equations describing the system in its entirety. This would involve
Gaussian elimination of the global mass matrix at each time step. The computational consequences of this

can be quite substantial since the number of calculations involved in a recursive solution grows linearly with
the number of bodies whereas the Gaussian elimination obeys a cubic relationship.

2 Equations of Motion

Let us consider a chain of contiguous bodies B0, BI,...,BN as shown in Figure 1. Interbody joints may

permit arbitrary relative (rotational and/or translational) motion. Each joint therefore possesses at least
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one degree of freedom and at most six. For convenience, we shall assume interbody translations to be small;
however, the extension to large translations can be incorporated into the present formulation. For additional

details on the derivation of the equations of motion, the reader should consult SINCARSlN & HUGHES [1989].

• Ok-_""_

0 3 • " O_

Figure 1: A Chain of Rigid Bodies

2.)
attached to Bn. We shall define

_n

as the generalized velocity (cf. twist velocity) of B, at 0,_.

definition for a generalized force (cf. wrench) acting at (9,:

= g.-1

where f_n-1 and gnn-t are the reaction forces and torques on Bn due to Bn-S as expressed in .Tn.

The motion of Bn is defined by the velocity v. of On and the angular velocity w. of B,_. (See Figure
Both vn and wn are measured with respect to inertial space but are expressed in _n, a reference frame

(I)

We furthermore introduce the accompanying

(2)

I1

On+l

Figure 2: Reference Frame

The resulting equation of motion for 13n can be written as

A4_)_ = f.T + .f,,, (3)
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where

A4n A mnl --e n
= cx J.

is the (constant) mass matrix corresponding to B.., that is, m., c. and J. are the zeroeth (mass), first and

second moments of inertia (about 0.) of B.. Also, fnT is the total external (generalized) force acting on B.,

including interbody forces, and .fnt, which accounts for the nonlinear inertial terms, can be neatly written
as

f._ = ("._)T-_-"- (4)

where

[ x]X & t.4._nX Vn
1V. ---- X

• _.,m)n

and (.)x operating on a Cartesian (3x 1) column matrix, such as vn, _a, or On, is the matrix equivalent of
the vector cross product. In a rate-linear model, one would set fnt = 0.

Interbody Constraints

The set of equations (3) does not yet describe a chain of bodies since it does not take into consideration the

interbody constraints imposed by the joints. To do so, we begin by observing that

,,. = T.,.-lV.-1 + vn,i.t (5)

which introduces the relative interbody generalized velocity 10n,int of B. with respect to Bn-x. In addition,

Tn,.-I = Cn,.--i -- .,.--1 n--1

• Cn,n-1

is the generalized tranformation matrix between B.-i and B.; Cn,n-I is the rotation matrix from _'n-1 to

Jrn and r n is the position of On with respect to On-l. The geometric constraints imposed by the jointsn--1

can thus be expressed formally as
t_n,in t = _nVn.r (6)

where "P. is a projection matrix and vn_ is the column of free joint (rate) variables. The absolute velocities

vn can be obtained recursively from vn-I and vn-r.

We also note that
T n n-1Y.r = _r.+l,.Y.+x - In + Yn,ext (7)

where fn,ext is due to solely to external influences. Furthermore, the generalized interbody forces :f_-I can
be expressed as a sum of control forces f,,c and constraint forces fn,o, i.e.,

f."-_ = -_'.f.,¢ - Q.f.,o (8)

The projection matrix Q,, is the complement of "Pn.

Projection Matrices

A few words are perhaps in order regarding the projection matrices. First, as a simple yet very impor-

tant example, consider a joint with a single rotational degree of freedom about, say, the third axis of an

appropriately chosen reference frame. The corresponding projection matrix "Pn is

7_,=[0 0 0 0 0 1] T

We may also add that v,. r = "Y3, where 73 is the angle of rotation.

In general, "Pn is not constant, as above, but rather is dependent on configuration. Contemplation of
a universal joint will quickly reveal this fact• The columns of "Pn are in general not orthonormal but

_'_'n = zn (9)
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whereis 2"_ is nonsingular. The complementary projection matrix Q. satisfies

T
7_,, Q,, = O

Without loss in generality, the columns of Qn can be taken as orthonormal.

(10)

Kinematical Equations

The kinematical equations accompanying the dynamical equations (3) can be summarized in terms of Tn,n-1:

If we express Vn,int aS

_Wn,n-1 = --VnX,intTn,n-1 (11)

Vn,int : (12)
¢On,int

we can extract from (11),

Cn ,n-1 ×---- --COn,latCh,n-1 (13)

For physical reaSons, Euler angles make for the most convenient and expedient representation of rotational

joint degrees of freedom. Interbody translation is given by the integration of vn,in t and would be reflected
in "rn- 1 •

3 Rate-Linear Simulation Dynamics

The recursive method presented here is a generalization of Featherstone's method applicable to rigid multi-

body chains with arbitrary interbody constraints. The development, in fact, runs parallel to a similar
generalization of Armstrong's recursive method [D'ELEUTERIO 1989]. The essential difference is that the

former is based on an affine relationship of the total interbody force to the absolute (generalized) body accel-
eration while the latter relates explicitly only the interbody constraint force. The generalized Featherstone

approach is particularly appealing because of its direct analogy to the discrete-time optimal problem. As
shall be demonstrated, however, a simple equivalence exists between the two schemes.

Let us begin, for explanatory purposes, by considering the rate-linear model, that is, we shall set
fnl ---- 0 in (3) leaving

A,t,6, = f,T (14)

The extension to the nonlinear case (and, in fact, to elastic multibody trees) will be straightforward from
here, although not totally without some algebraic effort.

Recursion for f_-I

We conjecture that the interbody forces f_-i can be written as

- f. "-1 = @./_. + ¢. .(15)

which is a generalization of Featherstone's hypothesis. Note that @, is, in effect, a mass matrix and ¢_ is
a generalized force quantity. The recursive algorithm is based on this result and the fact that @n and q_,
can be determined recursively from BN to/30.

The proof of (15) is by induction:
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Step I. ForBN, (14) becomes
.hClN._N = __fN-1 Jr /N,ext

wherein it has been observed that
Y +l - o

since 18N is the (free) terminal body. It is immediately obvious that if we set

_N = A4N, qJN = --YN.ext

(15) is satisfied for n = N.

(16)

(17)

Step II. We assume that
(18)

Step III.

NOW,

and

Given (18), we shall show that (14) follows. Substituting (7) into (14) yields
T n n--1

A4,,i_,, = T.+I,.I.+I - Y. + Y.,ext (19)

Vn+ 1 = _n+l,nVn + *Pn+lVn+l,7 (20)

Vn+1 = "fn+l,nlVn + _:_n-FlVn+l,7 (21)

(Note that the terms involving the time derivatives of Tn+l,n and _n+l are omitted since they are nonlinear
T

rate terms.) Substituting (21) and (8) in (19) and premultiplying by "JI_n+l gives

T • (22)
:rn+lfn+l, c = _n+l,pp'l_n-i-l,7 Jr 'Pn+l_n+lTn+l,nVn Jr '_n+l,P

where, in general,
_T_n p p _ r T

Solving for/_n+l,_ from (22), inserting back into (21) and using the result with (18) in (19) eventually leads
to

T -1 T '
__fn-1 ---- {,t_ n Jr Tn+l,n(_n+ 1 _ _]_n+l'_n+l_]_n+l,pp'_n+lL]_n+l)_f'n+l,n}Vr_

T -1
Jr {_'n+l,n[_Y_n+l"_n+l_n+l,pp(_.n+lfn+l,c -- _bn+l,P) Jr _)n+l] - fn,ext} (23)

Hence, we can identify
T -1 T

I]_n = "_4n Jr "l"n+l, n(ffa_n+l -- @n+l"Pn+l _]_n+l, pP'_n+l @n+l)'l'n+l'n (24)

1/) n 7"T+l,n [_IPn+l'Pn+11Is=._l,pp(_n+l fn+l,c -- _]Jn+l,P) Jr _bn+l] -- fn,ext

Step IV. By induction, then, (15) is proven.
[]

The matrix _, has an attractive physical interpretation. It is the mass matrix (about On) of the

part of the chain from Bn to BN associated with the constrained degrees of freeedom. FEATHERSTONE

[1983] would refer to @,, as the articulated-body inertia. It should also be pointed out that _n, which is

positive-definite, and _bn are configuration-dependent.

Recursion for /J_

By the inductive nature of the proof for (15), it has been shown that the matrices _n and ¢,_ can be
evaluated recursively inward, i.e., from BN to B0. Having done so, one can then perform outward recursion,

from B0 to BN, to solve for vnv. This is evident from (22).

Rewriting (22) for Bn instead of B,+I and solving explicitly for/Jnx yields

• = - "P. _I'.T.,n-lv.-1 - Cne)Vn7 _n;p(-_nln,c T ' (25)

Examining this result, we see that at Bn all the quantities on the right-hand side are known since 1)n-1 can

be computed recursively from its inboard neighbor according to (21).
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4 Nonlinear Simulation Dynamics

The extension to the nonlinear case can be had by simply persevering with the nonlinear rate terms in

the preceding development. However, there is a much more palatable approach which is also not without
significance in computational considerations•

Let [GOLLA 1988]

6n = a_ + a.,non (26)

such that

an = Tn,n-lan-1 + "P,.,vn-r (27)

Inserting (27) into (5) and differentiating reveals that we must have

am.o. = T,_,.-la=-1,non + _n,n-lVn-I Jr- _nVrt7 (28)

for (28) to hold. In essence, the acceleration quantities an account for the rate-linear effects and a .... . for
the nonlinear effects. Moreover, not only is an found recursively (outward) but an,non as well.

Upon substitution of (27) into the motion equation (3), we have

where

In fact, we could write (30) as

.art.an = I.T + Inl + f.,.o.

fn,non ---- -'A'4nan,non

(29)

,/i,/[na n __ _r.T+l,nf_+l _ fn-1 nu fn,net (30)

where

I.,..t __af.,.xt + f.1 + f.,.o.

Comparing (31) to (19), we learn that the nonlinear dynamics model is of the identical form as the rate-linear

model with 6n replaced by an and f,,,ext replaced by fn,net' We can therefore apply the results obtained
above directly to the nonlinear case.

Recursion for f_-l

In general, then, for rigid multibody chains

_ f_-i = @.an + On (31)

Note that _n is the same as before; however,

T -1
On = Tn+1,n[_n+l"Pn+l_]_n+i,pp(_'n+lfn+l,c -- On+l,P)f_n+l]- Yn,net (32)

with
T

Onp = :Pn 0,,

and ON = --fN,net"

Recursion for /_n_

The recursive relation for t),, v can be expressed as

v..y "_e(Znf,,,¢ r• = - 79n qS'nTn,n-lan-i - OnP) (33)

which reflects (26). It bears mentioning that the kinematical equations remain unchanged.
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Relationship to Armstrong's Work

Before proceeding onward, it is worth pointing out that

-1 T
_n -- _n_Dn _nppT_n _n = Qn _nQ T

where
T -1

_n = _]_rtQQ -- _npQ _T_npp _]_nPQ

and
_T_n p Q &__ T A T"Pn q_nQn, _T_nQQ "= _n _n_n

Showing (34) requires invoking the identity

"P, +Q, QT = 1

By virtue of (34), we can rewrite the first of (24) as

T T
_]_n = "_¢ln + Tn+l,n Qn+ l @n+l _n+l"l"n+ l,n

which is a more streamlined expression.

The significance of _n, however, lies in the fact that

'_,,Q, a,, + 4'.fn,O = T

where

(34)

(35)

(36)

4'n T T - 1= _n On -}" _nPQ_Y_nPp(Znfn,c -- _nP)

This result is equivalent to Armstrong's method for rigid multibody chains with arbitrary joint constraints.

5 A Discrete-Time Optimal Control Problem

Diverting our attention from multibody dynamics momentarily, consider the following optimal control prob-
lem: minimize

N

,7 = E lxTM_xk + xThk -- uT-ltk-1 (37)
2

k=0

subject to the linear state equation

xk+l = Akxt + Bkuk, x-1 = 0 (38)

Here, Mk is a sequence of positive-definite weighting matrices, and h_ and tk are vector weighting sequences.
Since ug does not influence xk, k < N, we shall assume that tN = 0. This problem is slightly different than

the standard "linear-quadratic" version that one typically encounters. The cost functional in the present
case is linear in the control variable. "

Minimizing ,.7 subject to the state equation is a straightforward optimization problem. Introducing

the lagrange multiplier or adjoint variable Ak, we define the augmented performance index as follows:

N 1

fl' _ E 2 xkTMkxk + xThk- uT-ltk-1 +)_T(xt_ -- Ak-lXk-1- Bk-luk-1)
k=O

(39)

The necessary conditions for optimality,

OY' OY' OY'

_gAk+_ - 0xk - 0uk
-o
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producethetwo-pointboundary value problem (TPBVP):

xk+l = Akxk+Bkuk, x_,=0 (40)

Ak = ATAk+l--Mkx_--hk, AN+l=0 (41)

tk = --BTAk+I (42)

We have taken AN+I = 0, without loss in generality, since tN ----0. Hence, from (41), AN = --MNXN -- hN

which supplies the basis for the inhomogeneous Riccati transformation, sometimes called the sweep method:

Ak = --Skxk -- rk (43)

with SN = MN and rN = hN. Substituting (43) into the equation for tk (42) and replacing xk+l with the
right side of (40), produces the feedback law

ut = -Ktxt + R_-l[tk - BTrt+l] (44)

where

Rt a__BTsk+IBt ' Kt __aR__,BTSt+,A t

The matrix Rt willbe invertibleifBt ismonic and St+1 ispositive-definite.Substitutingthe sweep solution

(43) for At and At+1 and using (40)for xt+1 and (44) forut gives

[St - AT(sk+I --Sk+IBkR_-'BTSk+I)At --Mk]x}

= -rt + (At - BtKt)Trt+l + KTtt + h_

Since this must hold for general xt, the coefficient of xt must vanish as well as the right hand side. Hence,

St AT(st+, -, r= -Sk+lBkR k BtSt+l)At+Mt (45)

which is the discrete-time matrix Riccati equation and

rt = (At - BtKk)Trt+l + KTtk + ht (46)

We now return to the question of the invertibility of Rt. The definitions of Kk and Rk reveal that (At -
BtK})Tst+IBt = 0 which allows us to write the Riccati equation as

St = (At - BtKt)Tst+I(Ak - B}Kk) + Mt (47)

Since Sg = MN is symmetic and positive-definite, St is symmetric and positive-definite (using backwards
induction). Hence, Rt defined previously is positive-definite and is always invertible.

The optimal control policy can now be summarized as follows: one solves the Riccati equation (45) (or
(47)) and the vector equation (46) backwards from k = N to k = 0 using the boundary conditions Sy = MN

and rg _- hN. The optimal control can then be calculated using (44) while propagating the state forward
using the state equation (40).

6 Relationship Between Optimal Control and Recursive Dynam-

ics

The TPBVP generated by the previous optimal control problem (40-42) is identical in form to that of the
multibody dynamics problem (30), (33), and

"PT tfn-1 (48)2-J., c = -_. _,,

which follows from premultiplying (8) by T 'T while recognizing (9) and (10). Therefore, we make the following
identifications:

xk _ a. At _ f_-'

Ilk _ qbn+l,-r ht *""* --fn,net

Bk _ "Pn+l tk +'-'-"+ "_n+lfn+l,c
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Hence, the accelerations a, are analogous to the states, the interbody forces f,_-x are analogous to the

adjoint states, the joint accelerations _)_ play the role of the control inputs, and the projection matrices

7_n+1 take the place of the input matrix Bk. It can be shown that the interbody tranformation matrices

"lrn+l,n possess the properties of the state transition matrix thus completing the analogy. Comparing the
transformation (43) with the generalization of Featherstone's solution (32) allows us to identify

Sk _ _Tln 1 rk _ _n , Rk _ _n+I,PP

We also emphasize that recursion in time (k) has been replaced by spatial recursion (n) at a given instant

in time.

Using the above identifications, the performance index ,7 can be written as

N

= -- fn,netan -- ]n,c.."£nVn.,/
z-., 2
n=O

Hence, in the multibody dynamics problem one can minimize ,7 subject to the kinematical constraint equa-

tion (30) to arrive at the defining equations. Compare this with GIBBS' [1879] formulation of the dynamics of

a system of N particles with masses ran, coordinates zn, Yn, Zn, and subjected to forces Xn, Yn, Zn : minimize

f l ,_2
7mnt n + i/-_ + Z-_) -- Xn_n - YnYn - Zn_,

subject to the kinematical constraints.

In the work of RODRIGUEZ [1987], he points out the similarity between the equations describing a chain

of hinged bodies and the TPBVP that arises in discrete-time, optimal estimation and smoothing problems.
In his formulation, the bodies in the chain are numbered inwardly (i.e., the tip body is B0 and the root

body is BN). Here, the numbering of the bodies is outward (the root body is B0 and the tip body is BN).
With this convention, the equations are rendered dual to those of Rodriguez. As such, the corresponding

discrete-time problem is not one of estimation and smoothing but one of control. It is interesting to note the

dual relationships inherent in Rodriguez's work. The role of the state is played by the interbody forces and
the adjoint states are the link accelerations, which are a juxtaposition of the results given above. The control

torque at each joint plays the role of a measurement of the states whereas we have the joint accelerations

acting as 'control inputs'.

7 Summary of the Recursive Algorithm

We now summarize the procedures for determining the motion of the chain of bodies. The control forces,

fn,c(t), and external force distribution, fn,ext(/), are prescribed on the time interval of interest. Beginning
with t = 0, we proceed as follows:

Step 1. At time t, the relative velocities ruT(t) and the rotation matrices Cn,n-l(t) are known.

Step 2. Outward recursion for the velocities Vn and determination of fn,net:

Do n = 0 to N;

Generate T,,,n-1 using C,,,-1.

V.n,int = 'Pn_n-¢.
×

'7"n,n_ 1 = --Vn,int_"n,n_ 1.

Vn = _r'n,n-l Vn-1 "_ _n,int-

an,non = Tn,n-lan-l,non + _rn,n--lVn--1 + _nVnT.

f nI = (l_×n ) T _nvn, fn,non = --']_'_nan, n°n"

fn,net = fn,ext q- Ynl -I- $_n,non"

Next n.
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Step 3. InwardRecursion for _n and Pn:

Set _N = .a,4N and PN = --fN,non"

Don=N-lto0;
T T

i]_n+l,PP = "JOn+ll]_n+l'Pn+l, fOn+l,P : "Pn+lPn+l
-1

_n ---- _n.t.l,pp'_nq-l _n-l-l Tn-l-l,n , rn+l,n : Tn+l,n -

_n T= rn+l,n_n+lrn+l,n q- _n

Pn FT..I- 1,n f_n ÷ 1 _T= + nfn+s,c- fn,net
Next n.

If 7'0 _ O, _0pP = "P0rffs0"P0, Poe = "poTp0

_n'Pnq-1.

Step 4. Outward Recursion for bnT:

If _'o = O (B0 is constrained), then bo_ = a0 = 0

Otherwise,/_o_ -1=  0pp[:f0,¢ - 'hop],a0 =  '0v0 .
Do n = 1 to N;

Cn n--i X, _ --QJn,intCn,n-1

an = _l_n,n-lan-1 "4-*_nVn7

Next n.

Step 5. Estimate VnT(t + At), Cn,n-l(t + At) using some quadrature scheme.

Go back to Step 1 and replace t with t + At.

This completes the summary of the recursive simulation procedure. Note that in a rate-linear simulation, one

ignores the contributions of fn! and fn,non to fn,net in Step 2. We have written the recursion for @n and
Pn, in Step 3, in terms of the quantities K;, and rn+l,n since this leads to the most compact and efficient
expressions. The fourth step produces the joint acclerations /_n_ which can be integrated in conjunction

with the kinematical relationships for the rotation matrices to produce the joint orientations/positions and
velocities.

8 Concluding Remarks

Given the forces on a chain of rigid bodies, we have shown that the accelerations of the bodies can be
determined using the recursive procedures of discrete-time optimal control. The underlying analogy that

makes this possible yields great insight into the structure of the multibody dynamics problem.

There are many extensions of the present results, a few of which we shall briefly mention here. The

analysis presented was limited to topological chains of rigid bodies. It is easily extended to topological

tree configurations. The problem of flexible multibody dynamics has been considered by D'ELEUTERIO

[1989] who shows that the structure of the equations is unaltered by flexibility. Indeed there is a one-to-one

correspondence between the rigid and flexible problems. With this duality in hand, one can readily extend

the present analysis to the problem of elastic multibody chains. Such an extension has been performed by

DAMAREN _ D'ELEUTERIO [1989].
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